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18 Abstract

19 Flood modelling provides inundation estimates and improves disaster preparedness and 

20 response. Recent development in hydrologic modelling and inundation mapping enables 

21 the creation of such estimates in near real-time. To quantify their performance, these 

22 estimates need to be compared to measurements collected during historic events. We 

23 present an application of a flood mapping system based on the National Water Model 
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24 (NWM) and the Height Above Nearest Drainage method to Hurricane Harvey. The 

25 outputs are validated with high-water marks collected to record the highest water levels 

26 during the flood. We use these points to compute elevation-related variables and flood 

27 extents and measure the quality of the estimates. To improve the performance of the 

28 method, we calibrate the roughness coefficient based on stream order. We also use lidar 

29 data with a workflow named GeoFlood and we compare the modeled inundation to that 

30 recorded by the high-water marks and to the maximum inundation extent provided by the 

31 Dartmouth Flood Observatory (DFO) based on remotely sensed data from multiple 

32 sources. The results show that our mapping system estimates local water depth with a 

33 mean error of about 0.5 meters and that the inundation extent covers over 90% of that 

34 derived from high-water marks. Using a calibrated roughness coefficient and lidar data 

35 reduces the mean error in flood depth, but does not affect as much the inundation extent 

36 estimation. 

37 (Keywords: Large-scale flood modelling, high water marks, flood inundation 

38 mapping, lidar, HAND (Height Above Nearest Drainage))

39 INTRODUCTION

40 The US National Weather Service has developed a National Water Model (NWM) which 

41 continuously forecasts discharge throughout the nation’s stream and river network.  The 

42 headquarters of this effort is the National Water Center (NWC), located in Tuscaloosa, 

43 Alabama which recently issued a Handbook of NWC Visualization Services (National 

44 Water Center, 2020).  Each service is a map depicting some aspect of the forecast over 

45 the continental United States and in some cases, Hawaii.  Three main categories of 

46 forecast products are included: those for current conditions, for a short-range forecast 18 

47 hours ahead, and for a medium range forecast 10 days ahead.  The river flow forecasts on 

48 the main stem rivers are derived from regional models operated by the 12 regional river 

49 forecast centers operated by the National Weather Service. At the NWC, these forecasts 

50 are overlaid on those arising from the NWM whose data define flows in the rest of the 

51 river and stream network.  It is remarkable that the National Weather Service is now 

52 producing river forecast services as maps across the river and stream network, in addition 

53 to the traditional forecast hydrographs at particular points on the main stem rivers.
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54 Included in the NWC Visualization Services are inundation mapping services 

55 developed using the Height Above Nearest Drainage (HAND) method, for which the 

56 NWC Handbook cites the work of Zheng et al. (2018) and Liu et al. (2018).  Zheng et al. 

57 (2018) defined the methodology of producing inundation maps and synthetic rating 

58 curves to relate the discharge forecast to water depth above the river channel thalweg, 

59 and thus to inundation extent. Liu et al (2018) showed how the mapping and rating curves 

60 could be developed using supercomputing throughout the continental United States.  The 

61 inundation mapping services are at present being calculated at the NWC only for the 

62 West Gulf and Northeast River Forecast Centers, with the intention to include other 

63 regions later.  

64 The HAND-based inundation mapping approach has been implemented and 

65 improved in different studies. Shastry et al. (2018) added a hydraulic component to 

66 increase accuracy in headwater tributaries and at channel junctions where the backwater 

67 effect plays a role. Godbout et al. (2019) improved the hydraulic geometry estimation by 

68 proposing a segmentation of the National Hydrography Dataset (NHDPlus) river network, 

69 used as the default network in this approach. Viterbo et al. (2020) incorporated the 

70 HAND approach as a module of the NWM forecast framework and evaluated its 

71 performance for the May 2018 Ellicott City, Maryland, flood event. 

72 Some authors, however, have also identified shortcomings in the HAND approach 

73 to flood inundation mapping.  Johnson et al. (2019) compared inundation maps for 

74 various storms developed using the NWM and HAND with those measured by remote 

75 sensing, and concluded that inundation is systematically under-predicted in lower order 

76 reaches and over-predicted in higher order reaches.  They suggested that the Manning’s 

77 coefficient used in the HAND mapping is too small in lower-order reaches and too large 

78 in higher-order reaches.  In the NWM version 2.0, a constant value of Manning’s n is 

79 used, regardless of the order of the reaches.  Wing et al. (2019) make the case that 

80 “Planar approximations such as these, which do not consider flow physics, have been 

81 shown to be less skillful than models which represent the dynamics of flood inundation 

82 since the inception of raster-based hydraulic modelling”. They compare their physics-

83 based continental-scale 2D hydrodynamic approach with inundation mapping based on 

84 the NWM and HAND for Hurricane Harvey, and conclude that their approach produces 
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85 superior flood inundation maps.  In practice, the National Weather Service updates the 

86 NWM calculations for current conditions and short range forecasts hourly, and the 

87 inundation mapping part of the computation takes a small proportion of the total 

88 computation time. This means that the inundation mapping for large regions such as 

89 Texas needs to be completed in a time measured in minutes, not hours, and the HAND 

90 approach satisfies this operational criterion.

91 The HAND-based inundation map services were first developed and tested for 

92 Texas, and a very large scale test of their application was provided by Hurricane Harvey, 

93 which occurred in late August and early September 2017.  For rainfall of three to five 

94 days duration, Hurricane Harvey significantly exceeded all the previous worst storms in 

95 the continental United States. In this paper, we present a study to validate the water levels 

96 and inundation extents generated from the NWM-HAND system during Hurricane 

97 Harvey, using the high-water marks collected by the U.S. Geological Survey (USGS) and 

98 the inundation extent estimated by the Dartmouth Flood Observatory (DFO) with satellite 

99 data (Brackenridge et al., 2017). For the comparison with high-water marks, we compute 

100 differences in ground elevation and local water depth and quantify the errors in terrain 

101 inputs and in water depths. Channel roughness coefficients adopted in the model are then 

102 further calibrated based on stream order to minimize the water depth errors, consistent 

103 with the conclusions reached by Johnson et al. (2019). The comparison with high-water 

104 marks is first performed over the entire Texas Harvey-impacted domain using 10 m 

105 terrain data, and then over part of central Texas where high resolution topography is 

106 available from recent lidar surveys. Within the lidar coverage, an inundation extent is 

107 also computed from the high-water marks. This extent is compared with the extent 

108 generated from the model and the accuracy is quantified with performance metrics. The 

109 comparison with the DFO inundation extent is performed in the catchments with high-

110 water marks and over the entire impacted area in Texas. 

111 The paper is organized as follows: after introducing the flood event (Hurricane 

112 Harvey), study area (southeast Texas and part of central Texas), and datasets (Section 2), 

113 we briefly review the NWM-HAND flood mapping system and the improvements 

114 brought by GeoFlood, our workflow for flood inundation mapping on high resolution 

115 topography. We describe the method used to compare the modeled water levels and the 
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116 high-water marks, the calibration of the channel roughness coefficients, and the 

117 computation of the inundation mapping performance metrics (Section 3). The modeled 

118 water depths and inundation extents are compared to the high-water marks and the DFO 

119 map and differences are discussed (Section 4). Finally, we draw conclusions from this 

120 work on the capabilities of large-scale flood inundation mapping (Section 5).

121 FLOOD EVENT, STUDY AREA, AND DATASETS

122 On August 25, 2017, Hurricane Harvey (referred to as Harvey hereinafter) made landfall 

123 near Rockport, Texas, as a Category 4 hurricane. Its inland movement resulted in the 

124 most significant tropical cyclone rainfall event in United States history in both scope and 

125 amounts (Blake & Zelinsky, 2018). Its total eight-day rainfall depth exceeded 1,500 mm 

126 in some locations, which was about 300 mm greater than the previous historic continental 

127 U.S. record (Blake & Zelinsky, 2018). As a result of the overwhelming precipitation, 

128 historic flooding occurred in Texas, causing at least 68 direct fatalities as the deadliest 

129 hurricane to hit this area since 1919 and $125 billion of damage as the second costliest 

130 U.S. tropical cyclone (Blake & Zelinsky, 2018).

131 This study focuses on southeast Texas and part of central Texas (Fig. 1). We 

132 analyze all the basins where high-water marks were collected (Watson et al., 2018), 

133 resulting in 13 six-digit Hydrologic Units (HUC6). High-water marks are the evidence of 

134 the highest water levels (peak height of high water) during a flood (Koenig et al., 2016); 

135 during and after a storm, hydrologists visit the field and flag the marks left behind in 

136 natural and man-made environments by tranquil and rapid flowing water with highly 

137 visible signs. After the flood, follow-up surveys are conducted to measure the location 

138 and height at these locations. These marks provide valuable information about recent and 

139 historical flood events and have been widely used in various flood-related research topics 

140 such as flood frequency analysis (Sweet et al., 2013), inundation mapping (Schumann et 

141 al., 2008, Cariolet, 2010), indirect discharge measurement, and damage assessment. In 

142 the United States, the USGS is the main federal agency in charge of the collection, 

143 processing, and publication of high-water marks. 

144 [Placehold for Figure 1]
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145 The high-water mark collection during Harvey is the most extensive effort that the 

146 USGS has made. Over 2,000 high-water marks were surveyed in southeast Texas and 

147 three parishes across southwest Louisiana by over 100 USGS employees in about five 

148 weeks. At some sites, water surface elevations were measured at multiple marks and the 

149 different measurements were averaged. Therefore, these raw marks were synthesized in 

150 1,263 high-quality peak summary points, which have the most accurate estimation of the 

151 stage level at each measured reach. Right after Harvey, the USGS and FEMA initiated a 

152 study to estimate the magnitude of flooding and map its extent in Texas. In that study, 

153 high-water mark data (peak summary), together with discharge information measured at 

154 USGS stream gages, were used to create 19 inundation maps for six severely flooded 

155 basins. Both the inundation extent and the water depth grid were generated at each site. 

156 Although these maps provided valuable information to emergency managers after the 

157 event, some limitations can be found when they are examined in detail. First, their spatial 

158 extent is limited as these maps only cover parts of several main stem rivers in the 

159 hurricane-affected region. According to the NHDPlus MR (medium resolution), the total 

160 river length in the impacted region is 163,228 km, while USGS maps only cover 4,762 

161 km, which is 3% of the entire network. No maps are available for most tributaries and a 

162 large portion of the main rivers. Second, even though the Harvey high-water mark 

163 collection was extensive, its density was not high enough to accurately map local 

164 inundation across the impacted zone. Objectively describing the inundation extent of a 

165 small, rural reach requires five to ten marks, and more are needed in urban environments 

166 with man-made structures (Koenig et al., 2016). Applying spatial interpolation techniques 

167 with a limited number of sparsely distributed high-water marks to generate large-scale 

168 flood extents can result in significant overestimation that neglects most local inundation 

169 details (Fig. 2).

170 Within the Harvey dataset, 2,309 out of 2,359 high-water marks and 1,211 out of 

171 1,263 peak summary points are located in Texas. We use the peak data to evaluate the 

172 performance of our stage level estimation and inundation mapping system. At each peak 

173 summary point, two kinds of elevation-related quantities are measured: the peak stage 

174 and the height above ground. The former is the peak height of flood water above the 

175 geodetic datum, namely the North American Vertical Datum of 1988 (NAVD 88) in this 
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176 study. The latter records the local depth at the point marked when the stage reached the 

177 peak level. Both quantities are used in this study to evaluate the different components of 

178 our approach.

179 [Placehold for Figure 2]

180 Another independent source of Harvey inundation extent is the Dartmouth Flood 

181 Observatory (DFO) map (Fig. 3), which was produced by overlapping data from different 

182 sources (NASA MODIS, ESA Sentinel 1, ASI Cosmo SkyMed, and Radarsat 2). The 

183 flooded area captured in this map represents the maximum inundation extent during the 

184 entire event. The DFO map does not show inundation North-East and South-West of 

185 Houston (Fig. 3). For this reason, despite the presence of high-water marks, these areas 

186 are excluded in the comparison with our method, resulting in 633 catchments analyzed, 

187 which include both urban and rural areas.

188 [Placeholder for Figure 3]

189 Recent development of hyper-resolution large-scale hydrological modelling 

190 (Archfield et al. 2015, Bierkens et al. 2014, Salas et al., 2018) has significantly increased 

191 the spatial and temporal density of streamflow estimates. Since the launch of the NWM 

192 in August 2016, simulated discharge information is available for each of the 2.7 million 

193 river segments defined in the NHDPlus MR. We use the NWM outputs in our flood 

194 mapping system as real-time input streamflow information. The NWM has four types of 

195 operational configurations, including: analysis and assimilation, short-range forecast, 

196 medium-range forecast, and long-range forecast. Our study aims at estimating the best 

197 performance that the NWM and the HAND flood mapping system can achieve for this 

198 event. Therefore, we selected the most accurate streamflow output of the NWM, which is 

199 the one obtained from the analysis and assimilation model. This model uses a nudging-

200 based data assimilation technique to ingest observations from about 7,000 USGS stream 

201 gages as real-time flowrates, and propagate a correction throughout the entire river 

202 network. The model also incorporates information from 1,506 reservoirs. The analysis 

203 and assimilation model is executed hourly and provides a snapshot of the hydrologic 

204 conditions during the previous three hours. We archived NWM analysis and assimilation 
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205 products from August 23, 2017 to September 3, 2017 for each NHDPlus stream reach in 

206 the Harvey-impacted region.

207 Our flood mapping system relies on hydrologic terrain analyses and simplified 

208 hydraulic assumptions to allow the conversion from streamflow to water depth and 

209 inundation extent. The analyses that cover the entire Harvey-impacted area take the 1/3rd 

210 arc-second (about 10 m) NED as terrain input and generate hydrologic terrain attributes 

211 at the same resolution. These results have been computed in a previous study (Liu et al, 

212 2018) and published online. We also use a Digital Elevation Model (DEM) (coverage 

213 shown in Fig. 1) at 1 m resolution provided by the Texas Natural Resources Information 

214 System (TNRIS), which was generated from their 2017 lidar survey.

215 METHODS

216 Water Depth and Inundation Estimation Procedure of the NWM-HAND System

217 HAND measures the relative height of a given cell above the nearest flowline cell that 

218 location drains to. This elevation difference is used to define the flood depth at that cell: 

219 when the real-time stream water depth (h) is greater than the HAND value (handi) of a 

220 cell i, that cell is classified as flooded and the local water depth (di) at that location can be 

221 computed as: 

222                                                       (1)�� = ℎ ― ℎ����
223 This computation, performed for all the cells within the local drainage catchment of a 

224 stream reach, results in a water depth grid for that catchment associated to a flowline 

225 depth h. In a recent study (Zheng et al., 2018b), we showed that channel geometric 

226 properties, such as flood volume, inundated surface area, and inundated bed area 

227 corresponding to the depth h, can be derived from that depth grid. Furthermore, dividing 

228 these variables by the length of the river produces additional channel hydraulic 

229 information including cross sectional area, channel top width, wetted perimeter, and 

230 hydraulic radius. Repeating the calculations presented above at different water depths, the 

231 relationship between water depths and different channel hydraulic properties can be 

232 obtained (Zheng et al., 2018b). Under the assumption of one-dimensional steady flow, the 

233 Manning’s equation is then applied to generate a synthetic rating curve, knowing the 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

234 channel bed slope and the surface roughness coefficient. This rating curve is used to 

235 convert the streamflow estimate provided by the model to its corresponding water depth 

236 and compute flood inundation extent and depth (Zheng et al., 2018b).

237 Since the HAND grid relates the relative height above the nearest stream to 

238 flooding at a given location, having an accurate river network as the local datum for the 

239 HAND calculation is essential to the accuracy of the inundation map produced. Therefore, 

240 we recently coupled HAND with GeoNet (Passalacqua et al., 2010, Sangireddy et al., 

241 2016), an advanced river network extraction approach specifically designed for 

242 leveraging the information provided by high resolution topography data, while addressing 

243 the challenges associated with their analysis. In the combined workflow, called GeoFlood 

244 (Zheng et al, 2018a), lidar-derived high-resolution DEMs and the flowlines retraced 

245 based on nonlinear filtering, statistical analysis of terrain properties, and a cost 

246 minimization approach are used as the input for the HAND flood mapping calculations.

247 Validation of Water Depth Estimates versus High-Water Mark Field Measurements

248 We compute two types of errors related to two elevation-related measurements. The first 

249 type of error (edepth) measures the difference between the modeled local water depth (d) 

250 and the measured local water depth ( ), reported as the height above ground in the USGS �
251 high-water mark dataset:

252                                                       (2)�����ℎ = � ― �
253 The NWM provides streamflow estimates indexed by NHDPlus reaches, which are 

254 converted into reach-average flowline depths with our synthetic rating curves. A spatial 

255 intersection operation is performed between the NHDPlus catchment and the water marks 

256 to assign a flowline depth to each mark. Equation 1 is then applied to compute the 

257 modeled local water depth d. If a negative local depth d is obtained at a high-water mark 

258 position, it means that the location is not flooded according to our approach. By counting 

259 the number of high-water marks with a positive simulated depth (Ned≥0) and dividing it by 

260 the total number of high-water marks (N), a hit rate index (h) can be computed to 

261 estimate the overall performance of the model:

262                                                        (3)ℎ =
��� ≥ 0�
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263 The mean and standard deviation of the local depth error edepth are computed for 

264 all the high-water marks to quantify the accuracy of the local water depth estimation. 

265 Since the modeled water depth is obtained by converting the NWM peak discharge 

266 through HAND-derived synthetic rating curves generated with the Manning’s equation, 

267 the Manning's roughness coefficient, n, adopted to derive the rating curves has a 

268 significant impact on the magnitude of the depth error (Johnson et al, 2019). Therefore, 

269 we further calibrate the Manning’s n value within the generic channel roughness range to 

270 minimize the mean local depth error. 

271 This calibration, which identifies the best case among multiple scenarios with different 

272 roughness values, is conducted by stream order (o), which indicates the hierarchical 

273 position of different reaches within the river system from headwaters to main rivers.

274 The second error source are the terrain inputs. Since our method estimates 

275 inundation based on topography, the terrain input error propagates through the workflow, 

276 up to the final stage level estimation. At each high-water mark, the ground elevation ( ) �
277 can be calculated from the measured peak stage elevation ( ) and the measured local �
278 water depth as:

279 ,                                                       (4)� = � ― �
280 while the ground elevation used in the estimation (g) is directly extracted from the DEM 

281 at the same location. Then, the error in the ground elevation eground can be computed as:

282                                                  (5)������� = � ― �
283 Unlike the depth error edepth, the ground elevation error eground is fixed during the channel 

284 roughness calibration.

285 To eliminate the effect of tides on water depth measurements in coastal areas, we 

286 created a 2-km buffer zone around the coastline in the NHDPlus dataset, determined by 

287 clustering all the high-water marks classified as “coastal” in the metadata. All the 

288 locations within this buffer zone are excluded from the analysis (139 points out of 1,211 

289 peak summary points, resulting in 1,072 used in the analysis). 

290 In order to explore whether the performance of our mapping system can be 

291 improved by adopting high resolution terrain data, we use the lidar DEM as input and the 
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292 recently developed GeoFlood workflow to reconstruct the river network, the synthetic 

293 rating curves, and the inundation extent. We then reevaluate the performance of our 

294 approach using the same metrics already introduced.

295 RESULTS AND DISCUSSION

296 Texas Harvey-impacted Zone Comparison with NED

297 Water Depth Comparison. The error in ground elevation over the entire domain 

298 has a mean of 0.06 m and a standard deviation of 3.46 m (as previously found by Zheng, 

299 2018). However, there are four points in the dataset with an error greater than 20 m, 

300 indicating potential errors during the measurements. When these outliers are removed 

301 from the sample, the mean error shifts from 0.06 m to -0.05 m, and the standard deviation 

302 drops from 3.46 m to 1.53 m. Among the 1,072 peak summary points, 313 of them (29.2% 

303 of the total) have a ground elevation error less than 0.305 m and 707 of them (66.0%) 

304 have a ground elevation error of less than 1 m. These numbers demonstrate that the 1/3 

305 arc second NED provides an acceptable estimation of the actual elevation over the region 

306 but with large uncertainties at individual locations.

307 When estimating the error in local water depth estimation, a reach-based channel 

308 roughness calibration is first conducted over the entire dataset. The 1,072 peak summary 

309 points are located in 892 NHDPlus catchments. The optimal Manning’s n value is 

310 identified within the range 0.01 - 0.2 (Chow, 1959), with an interval of 0.005 for each 

311 individual reach where NWM estimates are available. When multiple peak summary 

312 points are located in the same catchment, the optimal Manning’s n for that reach is 

313 obtained by minimizing the reach-average depth error. This calibration effort results in a 

314 mean water depth error of -0.68 m and a standard deviation of 2.20 m. As a reference, the 

315 uncalibrated simulation with a single Manning’s n value of 0.05 gives a mean error of -

316 0.45 m and a standard deviation of 3.60 m. Among the 1,072 peak summary points, 449 

317 of them have positive water depths and thus are flooded according to the NWM-HAND 

318 model; this value corresponds to a hit rate of 41.9%. The underperformance shown by the 

319 results is partially due to the significant randomness associated with the point sampling 

320 strategy of the high-water mark collection, which is different from the areal comparison 
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321 widely used in traditional inundation extent comparisons. If only positive water depths 

322 are taken into account during the Manning’s n calibration process, our system detects 653 

323 flooded points, corresponding to a hit rate of 60.9%. At the points with positive water 

324 depths, the depth error has a mean of 0.57 m and a standard deviation of 0.94 m.

325 Although the reach-based channel roughness calibration can achieve optimal 

326 performance, it is not practical during modelling since no ground truth information is 

327 available. Therefore, we explore bulk calibration alternatives, dividing stream reaches 

328 into different groups and then assigning a generic channel roughness coefficient to 

329 streams in each group. We identify groups based on stream order and stream level. The 

330 results (Table 1) show that, compared to the previous reach-based calibration, a stream-

331 order-based calibration gives better total estimation (smaller total mean error of -0.39 m) 

332 due to the error compensation among different sites. This difference in error does not 

333 necessarily mean that the bulk calibration performs better than the reach-based individual 

334 one in all cases. However, this result demonstrates the value of a bulk calibration, which 

335 is computationally advantageous, especially when the model is running in operational 

336 mode. The estimation error in first-order streams is significantly greater than in higher 

337 order streams. When a similar analysis is applied to the ground elevation errors, such a 

338 difference cannot be detected, indicating that it is mainly due to the flow underestimation 

339 of the NWM in headwater catchments. The residual error in the mean water depth 

340 represents the uncertainty that cannot be addressed by calibrating the Manning’s n 

341 coefficient. A decreasing trend with increasing stream order can be observed in the 

342 optimal Manning’s n value (Table 1, Fig. 4), which is consistent with the fact that 

343 headstreams usually have higher roughness than downstream rivers.

344 [Placeholder for Table 1]

345 [Placeholder for Figure 4]

346 The optimal relationship between Manning’s, n, and stream order, o, is found to be:

347                                                   (6)� = 0.2313 �―1.325

348 An equation of this form may be useful to correct for the under-prediction in streams of 

349 low order and over-prediction in streams of high order identified by Johnson et al. (2019).  

350 We also calibrated the roughness coefficient based on stream level (the opposite of 
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351 stream order), another stream numbering system, which assigns the hierarchy of streams 

352 from the mouth. The results (Table A.1) confirm the findings of the calibration based on 

353 stream order.

354 Inundation Extent Comparison. To assess the accuracy of our flood maps, for 

355 each NHDPlus catchment containing high-water marks, we reconstruct the inundation 

356 based on the measured high-water marks, using a flowline depth calculated as the sum of 

357 the high-water mark HAND value and the measured local water depth. Then, we compare 

358 it to the inundation extent generated with our optimal modeled depth (Fig. 5). When the 

359 same mapping procedure is implemented in the 892 NHDPlus catchments where the 

360 1,072 peak summary points are located, the total inundated area computed with the 

361 USGS high-water mark measured depths is 6,049 km2 versus 5,526 km2 with NWM-

362 HAND modeled depths; thus, the total modeled extent covers 91.3% of the one 

363 reconstructed with high-water marks. However, when the performance is examined at 

364 each individual site, a significant amount of variation is detected: 48.8% of the sites have 

365 an estimation/observation area ratio between 0.5 and 1.5, and 80.1% of the sites have an 

366 area ratio between 0 and 2, suggesting that our system estimates more than double 

367 inundation coverage for nearly 20% of the sites.

368 [Placeholder for Figure 5]

369 Central Texas Harvey-impacted Zone Comparison with Lidar Data

370 Since uniform quality high resolution terrain data are not available for the entire study 

371 area, we focus on Central Texas where a 1 m DEM has been derived from the 2017 lidar 

372 survey part of the Strategic Mapping Program; 49 peak summary points located in 45 

373 NHDPlus catchments are within the lidar domain. The difference between the NED and 

374 the lidar-derived DEM, and the difference between the NHDPlus MR flowline and the 

375 GeoFlood-extracted one are shown in Fig. 6.

376 [Placeholder for Figure 6]

377 Water Depth Comparison. We compute the error in ground elevation for the 49 

378 high-water marks and find that the mean error is now decreased from -0.47 m with NED 

379 to -0.25 m with the 1 m lidar DEM. The standard deviation of the error is also reduced 
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380 from 2.19 m with NED to 1.85 m. The significant variation still present could be due to 

381 the removal of artificial structures during the hydro-enforcing process when the DEM 

382 was produced. Many of the high-water marks were collected on roads and bridges across 

383 rivers in flood, whose elevations are not retained in the DEM. Among these 49 peak 

384 summary points sampled from the lidar DEM, 22 of them (44.9% of the total) have a 

385 ground elevation error less than 0.305 m, and 36 of them (73.5% of the total) have a 

386 ground elevation error less than 1 m. The corresponding values calculated with NED are 

387 10 (20.4%) and 24 (49.0%). The numbers listed here suggest that the lidar DEM provides 

388 a more accurate and robust estimation of land surface elevation, compared to the NED.

389 When estimating the error in local water depth obtained with the reach-based 

390 channel roughness calibration, using either lidar or NED results in 18 out of 49 sites with 

391 positive modeled depths, corresponding to a hit rate of 36.7%. However, the lidar case 

392 has a smaller mean (-0.66 m) and standard deviation (1.36 m), compared to the NED case 

393 (mean of -0.84 m and standard deviation of 1.96 m). If only positive water depths are 

394 kept during the calibration process, the lidar results capture 30 out of 49 sites with a mean 

395 of 0.27 m and a standard deviation of 0.35 m, while the NED results capture 22 with a 

396 mean of 0.77 m and a standard deviation of 1.06 m. When the stream-order-based 

397 calibration is applied, the results obtained with lidar data (Table 2(a)) and the NED 

398 (Table 2(b)) show that, compared to the NWM-HAND results generated with NED, the 

399 mean error in local water depth decreases from -0.74 m to -0.33 m. The results of our 

400 global analysis (Section 4.1.1) are confirmed, including the difference in the depth error 

401 magnitude between first-order streams and higher order ones.

402 [Placeholder for Table 2]
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408 Inundation Extent Comparison. In the 45 NHDPlus catchments in Central 

409 Texas where the 49 peak summary points are located, the total inundated area computed 

410 with the USGS high-water mark measured depths is 38.34 km2, while that computed with 

411 NWM discharge, GeoFlood workflow and calibrated Manning’s coefficients is 27.80 km2, 

412 covering 72.5% of the one reconstructed from high-water marks. As a reference, the 

413 estimation made by the NWM-HAND approach with NED covers 70.4%. At each 

414 individual site, both NED and lidar results show 27 sites (55% of the 49 sites) with an 

415 estimation/observation area ratio between 0.5 and 1.5, and 41 sites (84% of the 49 sites) 

416 with a ratio between 0 and 2 (note that, although the numbers are the same, the specific 

417 catchments in the NED case and the lidar case are not always the same). These numbers 

418 show that, first, tuning the channel roughness coefficient cannot fully compensate the 

419 errors of the NWM, and adopting higher resolution terrain inputs with an approximate 

420 inundation mapping approach does not necessarily improve the accuracy of the estimated 

421 flood extent. The equivalence between inundation extent estimates generated with 

422 different terrain inputs can be explained by noting that the variation in local inundation 

423 extent computed with high resolution terrain data diminishes as water level rises and 

424 more areas become flooded (Fig. 7). It is important to note that using high resolution 

425 terrain results in more accurate and detailed flood depth estimates (Fig. 8), especially 

426 near artificial structures in urban environments. Local inundation details cannot be 

427 revealed with low-resolution terrain data because these landscape details are not captured.

428 [Placeholder for Figure 7]

429 [Placeholder for Figure 8]

430 Comparison with maximum extent from the DFO

431 We compare our estimated inundation to the DFO extent in two domains as above: in 

432 catchments containing high-water marks and over the entire impacted area in Texas. The 

433 percentages of correct estimation, underestimation, and overestimation are defined in 

434 terms of flooded area of our approach. To perform the comparison within the catchments 

435 containing high-water marks, we focus on those catchments that are flooded according to 

436 the DFO map. In order to make our results and the DFO map comparable, we resampled 

437 the DFO map at a spatial resolution of 10 m. 
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438 The total inundated area computed with the NWM-HAND depth is 2,695 km2, while the 

439 DFO flooded area is 2,138 km2. Results show that the overlap corresponds to 26%, the 

440 DFO-only coverage to 30%, and the NWM-HAND-only coverage to 44% of the total 

441 area. The performance does not appear to depend on land use, as we have obtained 

442 similar values after dividing the domain in rural (185 catchments) and urban areas (448 

443 catchments). At several individual sites, the flood extent estimated by our method is 

444 similar to that of the DFO map in terms of overall inundation pattern, rather than in terms 

445 of area ratio (Fig. 9). Detection of flooding from satellite data is known to be altered by 

446 the backscatter caused by buildings and by the presence of vegetation, likely playing a 

447 role in the differences here observed (Fig. 9). Citizen-contributed data could be used to 

448 improve the prediction in these areas (Yang et al., 2019).

449 [Placeholder for Figure 9]

450

451 We performed the same analysis over the entire area; for each HUC6 unit, we 

452 computed synthetic rating curves with the calibrated Manning’s n and the flooded area 

453 corresponding to the peak discharge for each reach from the NWM (Fig. A.1). We 

454 clipped the domain in order to isolate the areas that were flooded according to the DFO 

455 map, removing the permanent water bodies and the catchments close to the coast. We 

456 obtained a total inundated area of 11,621 km2 with the NWM depth and 10,105 km2 from 

457 the DFO map. The result shows that the overlap corresponds to 21%, 35% is DFO-only 

458 coverage, and 44% is NWM-HAND-only coverage.

459 The inconsistency of the results might depend on the nature of the phenomenon 

460 that we are analyzing and the limitations of both approaches. To examine the quality of 

461 the DFO inundation extent itself, we also computed its corresponding high-water mark 

462 hit rate. Only 281 out of the 1,072 marks fall in the DFO coverage, corresponding to a hit 

463 rate of 26.2%. This relatively low hit rate indicates that the remote-sensing-based DFO 

464 inundation map may not be capable to capture flood conditions at higher-order streams. 

465 The inundation extent produced by the DFO has been obtained by overlaying data at 

466 different resolutions and time stamps from multiple sources. Hence, re-projection and re-
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467 scaling might have reduced accuracy and generated loss of data, possibly explaining the 

468 discontinuous pattern of flooding observed in portions of the DFO map.

469 CONCLUSIONS

470 Recent development in operational continental-scale hydrologic modelling and 

471 inundation mapping has enabled the creation of regional- and continental-scale flood 

472 maps in near real-time. To quantify their performance, flood estimates from these 

473 systems need to be compared with field measurements collected during historic flood 

474 events. High-water marks, which record the highest water levels during a flood, are a 

475 well-known type of reference that has been widely adopted in previous flood modelling 

476 studies. During Hurricane Harvey, the USGS carried out the most extensive high-water 

477 mark collection in recent flood events, resulting in over 2,000 points in southeast Texas 

478 and southwest Louisiana. This dataset provides an unprecedented opportunity to examine 

479 the performance of large-scale flood models.

480 In this paper, we presented a study to validate the water depths and inundation 

481 maps generated from the operational NWM-HAND flood mapping system versus 

482 corresponding quantities measured at high-water marks; 1,072 peak summary points in 

483 Texas were used in this effort. Different elevation-related variables were computed to 

484 identify the quality of ground elevation in the DEM and the local water depth generated 

485 from the flood model. The results show that the 1/3 arc second NED adopted in the 

486 current NWM-HAND model provides overall acceptable estimations but suffers from 

487 great uncertainties at individual locations. When modelling local water depths, the depths 

488 converted through the HAND-derived synthetic rating curves with either reach-based or 

489 stream-order-based calibrated channel roughness coefficients, have a mean error of about 

490 0.5 m and a standard deviation around 2 to 3 m. The stream-order-based channel 

491 roughness coefficient calibration shows a decreasing trend in the optimal Manning’s n 

492 value associated with increasing stream order. The total simulated extent covers over 90% 

493 of the one reconstructed from high-water marks with larger uncertainties at individual 

494 sites.

495 We also investigated the benefits that high resolution topography can bring to 

496 flood inundation mapping by applying the workflow GeoFlood. Water depths estimated 
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497 from lidar data have smaller mean errors and standard deviations. While the estimation of 

498 flood extent is not particularly affected, adopting high resolution terrain data in flood 

499 inundation mapping results in improved depth estimates, especially in urban 

500 environments.

501 A stream-order-based calibration of the channel roughness coefficient improves 

502 the results, although future work is needed to compare the findings from this Harvey 

503 study to other flood events. The residual model errors that cannot be fully eliminated with 

504 the roughness calibration are due to the errors in streamflow estimates from the large-

505 scale hydrologic model, likely due to hydrodynamic effects, such as backwater, which are 

506 not captured in the model due to its underlying hydraulic simplifications. Therefore, the 

507 information provided by our simplified approach needs to be combined with the outputs 

508 from detailed local studies to obtain a comprehensive view of the flood impact caused by 

509 extreme flooding events.

510 The DFO map is a valuable instrument that leads to rapid analysis and 

511 comparison with our model; we found similarities in the overall patterns but also 

512 discrepancies at local scales.  Harvey caused significant pluvial flooding that is not 

513 captured by the NWM-HAND approach, possibly explaining the observed 

514 underestimation. Also, in several areas the inundation extent in the DFO map is 

515 discontinuous, leading to overestimation of our method at those locations. The inputs to 

516 these two approaches are different and more analysis is required to understand these 

517 differences as the NWM forecasted depths and extent are comparable to those measured 

518 at high-water marks.

519 Overall, our study shows that the current NWM-HAND approach provides a 

520 reasonable gross estimation of the inundation caused by large coverage extreme flood 

521 events such as Hurricane Harvey. Where available, the use of lidar data is recommended 

522 as local terrain and inundation patterns are better captured, resulting in improved flood 

523 depth estimation. A
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524 APPENDICES

525 (1) NWM-HAND and DFO inundation extent comparison for the entire Texas 

526 impacted area (Figure A.1); (2) Comparison of local water depth between NWM-HAND 

527 estimates with stream-level-based calibration and USGS high water mark measurements 

528 (Table A.1).

529 [Placeholder for Figure A.1.]

530 [Placeholder for Table A.1.]
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637 Table 1. Comparison of local water depth between NWM-HAND estimates with stream-order-

638 based calibration and USGS high-water mark measurements 

Stream 

Order

Number of Peak 

Summary Points

Optimal 

Manning's n

Depth Error 

Mean (m)

Depth Error Standard 

Deviation (m)

1 354 0.2 -1.22 2.69

2 307 0.1 -0.01 3.02

3 192 0.065 -0.04 2.78

4 93 0.045 0.10 4.05

5 45 0.03 -0.06 3.77

6 67 0.01 0.34 2.75

7 14 0.025 0.13 2.91

Total 1072 -0.39 3.05

639 Table 2. Comparison of local water depth between NWM-HAND estimates with stream-order-

640 based calibration and USGS high-water mark measurements using (a) lidar terrain inputs and (b) 

641 NED terrain inputs.

642 (a)

Stream 

Order

Number of Peak 

Summary Points

Optimal 

Manning's n

Depth Error 

Mean (m)

Depth Error Standard 

Deviation (m)

1 11 0.2 -1.16 1.82

2 12 0.2 -0.18 2.36

3 13 0.17 0.01 1.50

6 13 0.035 -0.10 2.37

Total 49 -0.33 2.04

643 (b)

Stream 

Order

Number of Peak 

Summary Points

Optimal 

Manning's n

Depth Error 

Mean (m)

Depth Error Standard 

Deviation (m)

1 11 0.2 -2.10 2.17

2 12 0.2 -1.03 1.89

3 13 0.2 -0.59 1.80

6 13 0.015 0.67 3.32

Total 49 -0.74 2.48
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644 Table A.1. Comparison of local water depth between NWM-HAND estimates with stream-level-

645 based calibration and USGS high water mark measurements 

Stream 

Level

Number of Peak 

Summary Points

Optimal 

Manning's n

Depth Error 

Mean (m)

Depth Error Standard 

Deviation (m)

1 254 0.025 0.06 3.27

2 387 0.08 0.00 4.23

3 262 0.19 -0.01 3.54

4 124 0.185 0.01 2.46

5 41 0.2 -0.91 3.24

6 4 0.2 -2.26 3.16

Total 1072 -0.03 3.63

646

647 Fig. 1. Overview of the study area: Harvey impacted areas in Texas. Flood peak summary points 

648 collected by the USGS during Harvey are used to quantify the performance of the NWM-HAND 

649 flood mapping system. The gray dashed area indicates the extent of the lidar survey, while the 

650 black solid boundary indicates the extent of the City of Houston. Blue solid boundaries indicate 

651 the HUC6 watersheds analyzed.

652 Fig. 2. Harvey inundation map of the lower reach of the Brazos River created by the USGS using 

653 high-water marks and interpolation.

654 Fig. 3. Inundation extent produced by the Dartmouth Flood Observatory for Hurricane Harvey 

655 and published on September 8th, 2017. Red indicates flooding and the two boxes mark the areas 

656 excluded from the analysis due to lack of data. The black solid boundary indicates the extent of 

657 the City of Houston.

658 Fig. 4. Optimal channel roughness coefficients calibrated for different stream orders.

659 Fig. 5. USGS high-water mark and NWM-HAND inundation extent comparison: (a) 

660 Overestimation case, Reach 5790068 on Colorado River. The USGS inundation extent is created 

661 with a flowline depth of 6.79 m and the NWM inundation extent is created with a flowline depth 

662 of 7.50 m. These two extents have an area ratio of 1.21. (b) Underestimation case, Reach 

663 9349353 on Garcitas Creek. The USGS inundation extent is created with a flowline depth of 6.34 

664 m and the NWM inundation extent is created with a flowline depth of 5.89 m. These two extents 

665 have an area ratio of 0.97.

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

666 Fig. 6. Comparison of terrain datasets and flowlines: (a) 1/3 arc-second NED and NHDPlus MR 

667 flowline, (b) 1m lidar-derived DEM and flowline extracted with GeoFlood.

668 Fig. 7. Comparison of inundation extents generated with observed and modeled water depths 

669 from different resolution terrains: (a) HAND inundation extents derived from 1/3 arc-second 

670 NED, (b) HAND inundation extents derived from 1 m lidar DEM.

671 Fig. 8. Comparison of inundation extents generated with observed and modeled water depths 

672 from different resolution terrains: (a), (b) HAND inundation extents derived from 1/3 arc-second 

673 NED, (c), (d) HAND inundation extents derived from 1 m lidar DEM. The left column shows 

674 results generated with measured water depths at high-water marks, while the right column shows 

675 results generated with simulated water depths.

676 Fig. 9. NWM-HAND and DFO inundation extent comparison for rural and urban catchments: (a) 

677 rural catchment, reach 3124654 on Brazos River; area ratio of 1.54; (b) rural catchment, reach 

678 1605414 on Middle Bernard Creek; area ratio of 0.25; (c) urban catchment, reach 1638595 on 

679 Halls Bayou; area ratio of 1.2; (d) urban catchment, reach 1439537 on Sims Bayou; area ratio of 

680 22.5.

681 Fig. A.1. NWM-HAND and DFO inundation extent comparison for the entire Texas impacted 

682 area.
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